Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation

نویسندگان

  • Claudianor Oliveira Alves
  • Paulo Cesar Carrião
  • Olimpio Hiroshi Miyagaki
چکیده

we are concerned with perturbations of the Hamiltonian system of the type c L(t)q + W&, q) = 0, t E R, WI where q = (ql, , qN) E WN, W E C1(W x WN,R), and L(t) E C(W,WN2) is a positive definite symmetric matrix. Variational arguments are used to prove the existence of homoclinic solutions for system (HS). @ 2003 Elsevier Science Ltd. All rights reserved. KeywordsHomoclinic orbits, Duffing equations, Critical points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homoclinic Intersections and Mel'nikov Method for Perturbed sine -Gordon Equation

We describe and characterize rigorously the homoclinic structure of the perturbed sine{ Gordon equation under periodic boundary conditions. The existence of invariant manifolds for a perturbed sine{Gordon equation is established. Mel'nikov method, together with geometric analysis are used to assess the persistence of the homoclinic orbits under bounded and time-periodic perturbations.

متن کامل

Homoclinic Orbits and Chaos in Discretized Perturbed NLS Systems: Part I. Homoclinic Orbits

The existence of homoclinic orbits, for a finite-difference discretized form of a damped and driven perturbation of the focusing nonlinear Schroedinger equation under even periodic boundary conditions, is established. More specifically, for external parameters on a codimension 1 submanifold, the existence of homoclinic orbits is established through an argument which combines Melnikov analysis w...

متن کامل

Orbits homoclinic to resonances: the Hamiltonian case

In this paper we develop methods to show the existence of orbits homoclinic or heteroclinic to periodic orbits, hyperbolic fixed points or combinations of hyperbolic fixed points and/or periodic orbits in a class of two-degree-offreedom, integrable Hamiltonian systems subject to arbitrary Hamiltonian perturbations. Our methods differ from previous methods in that the invariant sets (periodic or...

متن کامل

Detecting the Shilnikov scenario in a Hopf-Hopf bifurcation with 1:3 resonance

We investigate the behaviour of the primary solutions at a Hopf-Hopf interaction close to a 1:3 resonance. It turns out, that the secondary bifurcations from the primary periodic solution branches are governed by Duffing and Mathieu equations. By numerical path following a homoclinic orbit at a saddle node was detected, giving rise to the Shilnikov scenario. In order to understand the creation ...

متن کامل

Existence , uniqueness , and stability of periodic solutions of an equation of Duffing type

Abstract. We consider a second-order equation of Duffing type. Bounds for the derivative of the restoring force are given which ensure the existence and uniqueness of a periodic solution. Furthermore, the unique periodic solution is asymptotically stable with sharp rate of exponential decay. In particular, for a restoring term independent of the variable t, a necessary and sufficient condition ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2003